Fab phage display screening service

Monoclonal antibody form

    You need to get an antibody with reduced immunogenicity and high specificity and stability? Use our huge human (2×1010 different clones) and rabbit (1.12×1010 different clones) Fab libraries. In ProteoGenix, our experts make sure you receive at least 3 different binders within only 4 weeks.

    Why choose ProteoGenix for your
    Fab phage display screening?

    Binders guaranteed with Fab phage display screening
    Binders guaranteed

    We guarantee at least
    3 binders to your antigen of
    interest

    Your Fab in 4 weeks
    Your Fab in 4 weeks

    Get your full Fab antibody
    sequence within maximum
    4 weeks

    High-Fab human and rabbit naïve libraries with Fab phage display
    High Fab human and rabbit
    naïve libraries

    Maximize the number of
    relevant binders using our huge
    diversity human and rabbit Fab
    libraries

    Immune Antibody Library construction for Fab phage display service
    Immune Antibody Library construction

    Benefit from our expertise in antibody production to construct your own
    immune library if you need an antibody
    with maximized binding affinity

    No animal uses with Fab phage display screening
    No animal uses

    Naïve library screening does
    not require any animal use

    Fab phage display for IP free
    IP free

    Be the owner of the Fab
    antibody sequence that
    we generate for you

    PhD project manager experts for your Fab phage display screening
    PhD project manager experts

    Benefit from our over 20
    years mAb development and
    phage display expertise

    Overview of our Fab antibody screening process

    Antigen design

    • Designed by us: hapten, peptide, protein
    • Provided by customer (you)
    Fab library screening and biopanning

    Fab library screening and Biopanning

    • Screening of naïve human Fab library against your antigen
    • 4-6 rounds of biopanning to get the pool of binders

    Immune Library
    construction

    • Animal immunization
    • Isolation of PBMC + spleen + bone marrow
    • VH and VL amplification and construction of the library
    Fab library screening and validation by ELISA

    Screening and validation by ELISA

    • At least 96 single phage binders screening, until at least
    • 3 to 10 desired binders are identified
    Phage DNA extraction + Fab antibody screening

    Phage DNA extraction + antibody screening

    Fab sequence delivery to the customer

    Fab sequence delivery to the customer

    What are fragment antibodies (Fab) ?

    Fab fragments, with a size of 50 kDa, represent the antigen binding fragment of a full-length antibody. They contain both the variable region of heavy chain (VH), a variable region of light chain (VL), a constant region of heavy chain 1 (CH1) and a constant region of light chain (CL). The fragments which contain disulfide bridge thiols are named Fab’ fragments, whereas those lacking the thiol functional group are called Fab fragments.

    How are Fab antibodies generated?

    There are three different methods to generate Fab fragments:

    -Enzymatic cleavage of the native parent antibody:

    Fab fragments can be generated by the enzymatic cleavage of the parent antibody (IgG) using papain, a cysteine protease. This enzymatic digestion leads to a separation of the 150 kDa antibody molecule into two 50 kDa fragments that bind the antigen (“fragment antigen-binding” Fab) and one that does not bind the antigen (“fragment crystallizable” Fc).

    -Recombinant technology

    Other Fab antibodies can be “synthesized” by recombinant technologies, leading to recombinant Fab antibodies, which sometimes might be different from the native Fab fragments. These methods encompass bacterial expression systems, using E. coli, usually used to get high antibody yields, or mammalian expression systems, such as CHO and HEK293 cells. Mammalian expression systems are the most widely used systems to keep the native properties of the Fab antibodies, for instance, the post-translational modifications that cannot occur in bacterial systems.

    -Phage display screening

    Nowadays, most recombinant antibody fragments are generated by phage display technology. This method is advantageous as it allows an easy and efficient selection of new Fab antibodies with higher binding affinities. It helps also selecting highly stable antibodies for a long-term storage, in a time and cost-efficient manner, when compared with other Fab antibody generating methods.

    What are Fab applications in research and clinics?

    Fab antibodies are used as powerful molecular tools in therapeutic and clinical applications as well as in research, thanks to their several advantages. First, their small size allows them a fast and efficient deep tissue penetration and clearance. Moreover, lacking the Fc-mediated effector functions reduces immunogenicity and immune reactions. In addition, the monovalent format of Fab and Fab’ antibodies lowers cross-linked immunocomplexes that can trigger anaphylaxis. To date, many Fab antibodies have received, or continue receiving FDA approval for a wide range of uses, mainly therapeutic, clinical, diagnostic and research applications. Here is a non-exhaustive list of some Fab applications reported to date:

    -Fab in Protein crystallization

    Fab proteins facilitate the determination of three-dimensional structures of hydrophobic proteins. They can create hydrophilic surfaces facilitating crystal contact formation essential for crystallization of hydrophobic proteins or transmembrane proteins having a hydrophobic micelle. They can also “Freeze” or “lock-in” some protein conformations, thus helping in their crystallization. Moreover, as they lack the Fc fragment and the hinge connecting the Fc and Fab fragments, interfering with crystallization, they act as “crystal chaperones” and facilitate the protein crystallization.

    -Fab as antidote / antivenom

    Fabs are used in emergency medicine as an antidote or antivenom. These Fab antidotes are generated from IgG enzymatic digestion. They are preferred to IgG antibodies mainly for their wide and fast distribution, low immunogenicity and their weak risks of inducing anaphylaxis following intravenous injections. Some of Fab antibodies which received the FDA approval and used in emergency medicine include: CroFab used as antivenom for rattlesnake bites and DigiFab which is an anti-Digoxin Fab antibody indicated in clinical toxicology, to treat patients who ingested fatal doses of cardiac glycoside digoxin.

    -Fabs in therapeutics

    Other Fabs are used in therapeutics to prevent or treat some diseases. These Fab antibodies include: ReoPro (abciximab) used as blood clotting inhibitor, which acts by binding to human integrin αIIbβ3 and thus, blocks the platelet aggregation; Ranibizumab (Lucentis) is used to treat Macular degeneration which targets vascular endothelial growth factor, involved in the blood vessel growth; Certolizumab pegol is a PEGylated Fab proposed to treat Crohn’s disease and rheumatoid arthritis by targeting the TNFα.

    -Fabs in diagnostics

    Fab antibodies have been modified to serve in diagnostic imaging of various cancers. Thanks to their shorter circulatory half-life properties, which makes them less toxic and fast cleared, these antibody fragments are preferred to radiolabeled IgGs. For instance, Arcitumomab is a Fab antibody that recognizes carcinoembryonic antigen overexpressed in 95% of colorectal cancers. This Fab fragment is radiolabeled with 99mTc and is used in diagnostic imaging to detect metastatic cancers.

    What are the key differences between Fabs and scFvs?

    Fab and scFv antibodies have several similarities as they both are made of fragments of an IgG. These fragment antibodies have several features making them an outstanding tool in modern medicine and in scientific research fields. Although they have shared features, these two antibodies have some specific characteristics which help to select the antibody of interest depending on the use and the different purposes. This table is a brief comparison between Fab and scFv antibodies where some key characteristics are highlighted.

    Antibody fragment Fab scFv
    Molecular weight (kDa) 50 25
    Backbone (composition) VH, VL, CH1, CL VH, VL
    Tissue penetration Good Very Good
    Tissue clearance Fast Very Fast
    Half-life (retention -time) Short Very Short
    Affinity Very High High
    Stability ++ +
    Applications -Emergency medicine
    -Diagnosis
    -Imaging
    -Therapeutics
    -Protein Crystallization
    -Neurodegenerative diseases
    -Cancer therapies
    -In vivo imaging
    -Protein function studies